
Charlie Gracie
Michael Thompson

Adopt Open J9 for Spring Boot
performance!

https://www.flickr.com/photos/teegardin/

§Part 1 – The economics of Cloud and Java

§Part 2 - Java for the Cloud… Open J9

§Part 3 – Demo

§Part 4 – Wrap up

2

Outline

Part 1 – The economics of Cloud and Java

3

4

In the Cloud footprint is king

GB/hr
This is the new measurement for application cost

5

In the Cloud footprint is king

§Myth: machines have plenty of RAM, so optimizing for
footprint is not worthwhile

6

In the Cloud footprint is king

§ Reality: application footprint is very important to:
– Cloud users: pay for resources
– Cloud providers: higher app density means lower operational costs

7

In the Cloud footprint is king

§ Reality: application footprint is very important to:
– Cloud users: pay for resources
– Cloud providers: higher app density means lower operational costs

§ Trends:
– Virtualization à big machines partitioned into many smaller VMs
– Microservices à increased memory usage; native JVM footprint

matters

8

In the Cloud footprint is king

§ Reality: application footprint is very important to:
– Cloud users: pay for resources
– Cloud providers: higher app density means lower operational costs

§ Trends:
– Virtualization à big machines partitioned into many smaller VMs
– Microservices à increased memory usage; native JVM footprint

matters

§ Distinction between:
– On disk image size – relevant for cloud providers , copy times
– Virtual memory footprint – relevant for 32-bit applications
– Physical memory footprint (RSS) relevant for real application costs

9

Someone
will be
looking at
your leaky
app

10

What does this mean to Cloud Java developers?

§ Changing –Xmx directly effects cost!
– Very easy for businesses to understand

11

What does this mean to Cloud Java developers?

§ Changing –Xmx directly effects cost!
– Very easy for businesses to understand

§ Net effect: You’ll be tuning your application to fit into specific RAM sizes
– Smaller than you use today

12

What does this mean to Cloud Java developers?

§ Changing –Xmx directly effects cost!
– Very easy for businesses to understand

§ Net effect: You’ll be tuning your application to fit into specific RAM sizes
– Smaller than you use today

§ You need to understand where memory is being used.
– You’ll be picking components based on memory footprint

13

What does this mean to Cloud Java developers?

§ Changing –Xmx directly effects cost!
– Very easy for businesses to understand

§ Net effect: You’ll be tuning your application to fit into specific RAM sizes
– Smaller than you use today

§ You need to understand where memory is being used.
– You’ll be picking components based on memory footprint

§ Increased memory usage for 1 service increases the bill by the number
of concurrent instances!

Part 2 - Java for the Cloud… Open J9

14

http://www.eclipse.org/openj9
https://github.com/eclipse/openj9

Dual License:
Eclipse Public License v2.0

Apache 2.0

Users and contributors very welcome
https://github.com/eclipse/openj9/blob/master/CONTRIBUTING.md

Eclipse OpenJ9
Created Sept 2017

http://www.eclipse.org/omr
https://github.com/eclipse/openj9
https://github.com/eclipse/omr/blob/master/CONTRIBUTING.md

16 https://adoptopenjdk.net/?variant=openjdk8-openj9

https://adoptopenjdk.net/?variant=openjdk8-openj9

17 https://hub.docker.com/r/adoptopenjdk/

https://hub.docker.com/r/adoptopenjdk/

18

Java ME Inside!

19

Java ME requirements

§Small footprint
–On disk and runtime.
–Very limited RAM, usually more ROM

§Fast startup
–Everybody wants their games to start quickly

§Quick / immediate rampup
–Your game should not play better the longer you play

20

Java in the Cloud requirements

§Small footprint
–Improves density for providers
–Improves cost for applications

§Fast startup
–Faster scaling for increased demand

§Quick / immediate rampup
–GB/hr is key, if you run for less time you pay less money

Java Heap and Garbage Collection

-Smaller object sizes
-Less overhead than other JVMs

-Innovative GC algorithms
-Compact data structures use less memory
-Aggressively use less heap

21

SharedClasses cache

-Xshareclasses
-enables the share classes cache

-Xscmx50M
- sets size of the cache

22

ShareClasses cache

23

Classfile ROMClass J9RAMClass

ShareClasses: ROM pays off

24

JVM 1 JVM 2 JVM 3

ShareClasses: ROM pays off

25

JVM 1 JVM 2 JVM 3

ShareClasses: ROM pays off

26

JVM 1 JVM 2 JVM 3

Shared Classes
Cache

Faster startup, Smaller footprint

“Dynamic” AOT through ShareClasses

27

Shared Classes
Cache

AOTROM Classes

$ java –Xshareclasses ...

28

ShareClasses and AOT

§Distinction between ‘cold’ and ‘warm’ runs

§Dynamic AOT compilation
–Relocatable format
–AOT loads are ~100 times faster than JIT compilations
–More generic code à slightly less optimized

§Generate AOT code only during start-up
§Recompilation helps bridge the gap

29

Further tuning options

§ -Xquickstart
–Designed for the fastest start-up
–Ideal for short-lived tasks
–May limit peak throughput

§ -Xtune:virtualized
–Tuning for containers
–Enables VM idle management
–Improves start-up and ramp-up. Trade-off of small
throughput loss

Part 3 - Demo

30

Spring Boot w/
Eclipse OpenJ9

31

32

OpenJ9 – Benefits & Considerations

Benefits:
§ Simple to adopt (download & use)

§ Smaller memory footprint

§ Higher throughput

§ Faster startup

33

OpenJ9 – Benefits & Considerations

Benefits:
§ Simple to adopt (download & use)

§ Smaller memory footprint

§ Higher throughput

§ Faster startup

Considerations:
§ Different –X arguments for tuning

§ Different default GC algorithm

34

OpenJ9 – Benefits & Considerations

Benefits:
§ Simple to adopt (download & use)

§ Smaller memory footprint

§ Higher throughput

§ Faster startup

Considerations:
§ Different –X arguments for tuning

§ Different default GC algorithm

As always, do your own testing!

35

Get OpenJ9
Download from https://adoptopenjdk.net/

Docker base image:

Java 8 - https://hub.docker.com/r/adoptopenjdk/openjdk8-openj9/

Java 11 - https://hub.docker.com/r/adoptopenjdk/openjdk11-openj9/

https://adoptopenjdk.net/
https://hub.docker.com/r/adoptopenjdk/openjdk8-openj9/
https://hub.docker.com/r/adoptopenjdk/openjdk11-openj9/

36

Use OpenJ9
export JAVA_HOME=~/openjdk8-openj9/
export PATH=$PATH:$JAVA_HOME/bin

java –jar ...

37

Use OpenJ9 in Docker

FROM adoptopenjdk/openjdk8-openj9
...
CMD ["java","-jar",...]

Docker File

! Live Demo !

Spring Boot w/
Eclipse OpenJ9

https://github.com/barecode/adopt-openj9-spring-boot

39

Spring Boot in Docker w/ OpenJ9

FROM adoptopenjdk/openjdk8
RUN apt-get update
RUN apt-get install -y \

git \
maven

WORKDIR /tmp
RUN git clone https://github.com/spring-projects/spring-petclinic.git
WORKDIR /tmp/spring-petclinic
RUN mvn install
WORKDIR /tmp/spring-petclinic/target
CMD ["java","-jar","spring-petclinic-2.0.0.BUILD-SNAPSHOT.jar"]

Docker File

40

Spring Boot in Docker w/ OpenJ9

FROM adoptopenjdk/openjdk8
RUN apt-get update
RUN apt-get install -y \

git \
maven

WORKDIR /tmp
RUN git clone https://github.com/spring-projects/spring-petclinic.git
WORKDIR /tmp/spring-petclinic
RUN mvn install
WORKDIR /tmp/spring-petclinic/target
CMD ["java","-jar","spring-petclinic-2.0.0.BUILD-SNAPSHOT.jar"]

OpenJDK w/ HotSpot

41

Spring Boot in Docker w/ OpenJ9

FROM adoptopenjdk/openjdk8-openj9
RUN apt-get update
RUN apt-get install -y \

git \
maven

WORKDIR /tmp
RUN git clone https://github.com/spring-projects/spring-petclinic.git
WORKDIR /tmp/spring-petclinic
RUN mvn install
WORKDIR /tmp/spring-petclinic/target
CMD ["java","-jar","spring-petclinic-2.0.0.BUILD-SNAPSHOT.jar"]

OpenJDK w/ OpenJ9

! Live Demo !

Spring Boot w/
Eclipse OpenJ9

https://github.com/barecode/adopt-openj9-spring-boot

43

Let’s go faster!

-Xquickstart
-Xshareclasses

JVM Options Refresher

-Xshareclasses
- enables the share classes cache

-Xscmx50M
- sets size of the cache

-Xquickstart
- designed for the fastest start-up
- ideal for short-lived tasks
- may limit peak throughput

44

45

Spring Boot in Docker w/ OpenJ9

FROM adoptopenjdk/openjdk8-openj9
RUN apt-get update
RUN apt-get install -y \

git \
maven

WORKDIR /tmp
RUN git clone https://github.com/spring-projects/spring-petclinic.git
WORKDIR /tmp/spring-petclinic
RUN mvn install
WORKDIR /tmp/spring-petclinic/target
RUN /bin/bash -c 'java -Xscmx50M -Xshareclasses –Xquickstart

-jar spring-petclinic-2.1.0.BUILD-SNAPSHOT.jar &’ ; sleep 20 ;
ps aux | grep java | grep petclinic | awk '{print $2}’ |
xargs kill -1

CMD ["java","-Xscmx50M","-Xshareclasses","-Xquickstart",
"-jar","spring-petclinic-2.1.0.BUILD-SNAPSHOT.jar"]

OpenJ9 with –Xquickstart & warmed –Xshareclasses

! Live Demo !

Spring Boot w/
Eclipse OpenJ9

https://github.com/barecode/adopt-openj9-spring-boot

47

Docker
Layers
Matter

(or why you should never do what Mike just did!)

48

How I created those images was stupid…

FROM adoptopenjdk/openjdk8
RUN apt-get update
RUN apt-get install -y \

git \
maven

WORKDIR /tmp
RUN git clone https://github.com/spring-projects/spring-petclinic.git
WORKDIR /tmp/spring-petclinic
RUN mvn install
WORKDIR /tmp/spring-petclinic/target
CMD ["java","-jar","spring-petclinic-2.0.0.BUILD-SNAPSHOT.jar"]

Docker File

49

How I created those images was stupid…

FROM adoptopenjdk/openjdk8
RUN apt-get update
RUN apt-get install -y \

git \
maven

WORKDIR /tmp
RUN git clone https://github.com/spring-projects/spring-petclinic.git
WORKDIR /tmp/spring-petclinic
RUN mvn install
WORKDIR /tmp/spring-petclinic/target
CMD ["java","-jar","spring-petclinic-2.0.0.BUILD-SNAPSHOT.jar"]

Docker File

So many pointless layers!

Wasted size, image = 853MB

Fine for demos…

Terrible in the real world!

50

This is simpler…

FROM openjdk:8-jdk-alpine
VOLUME /tmp
ARG JAR_FILE
COPY ${JAR_FILE} app.jar

ENTRYPOINT ["java",
"-Djava.security.egd=file:/dev/./urandom","-jar","/app.jar"]

51

This is better…

FROM openjdk:8-jdk-alpine
VOLUME /tmp
ARG DEPENDENCY=target/dependency
COPY ${DEPENDENCY}/BOOT-INF/lib /app/lib

COPY ${DEPENDENCY}/META-INF /app/META-INF
COPY ${DEPENDENCY}/BOOT-INF/classes /app
ENTRYPOINT ["java","-cp","app:app/lib/*","hello.Application"]

52

But wait!

You said many layers were bad?

53

These layers are pointless

FROM adoptopenjdk/openjdk8
RUN apt-get update
RUN apt-get install -y \

git \
maven

WORKDIR /tmp
RUN git clone https://github.com/spring-projects/spring-petclinic.git
WORKDIR /tmp/spring-petclinic
RUN mvn install
WORKDIR /tmp/spring-petclinic/target
CMD ["java","-jar","spring-petclinic-2.0.0.BUILD-SNAPSHOT.jar"]

Docker File

These layers don’t help the app

Unused build artifacts and
packages

The goal: create lean images

54

These layers are needed

FROM openjdk:8-jdk-alpine
VOLUME /tmp
ARG DEPENDENCY=target/dependency
COPY ${DEPENDENCY}/BOOT-INF/lib /app/lib
COPY ${DEPENDENCY}/META-INF /app/META-INF
COPY ${DEPENDENCY}/BOOT-INF/classes /app
ENTRYPOINT ["java","-cp","app:app/lib/*","hello.Application"]

The app pieces
are the right layers

Split out for smaller
layers & faster builds

55

The right layers matter …

§ Faster builds (cache re-use)

§ Faster deployents (less bits to push)

§ Less wasted Docker repository space (reduced cloud costs)

Step 1/10 : FROM adoptopenjdk/openjdk8-openj9
---> bf2da8bc5a91
Step 2/10 : RUN apt-get update
---> Using cache
---> 9582074cd6ef

56

How do I get there?
Don’t include the build of the app in the final image!

Either build in the host OS

or…

Use multi-stage Docker build

Think about your layers

Approach may differ based on app
Different for Tomcat, Open Liberty, etc

57

Let boost-maven-plugin help you

<plugin>
<groupId>io.openliberty.boost</groupId>
<artifactId>boost-maven-plugin</artifactId>
<version>0.1</version>

</plugin>

pom.xml

Simplify the use of Docker for Spring Boot applications

58

Let boost-maven-plugin help you

Boost creates the layers for you

mvn package boost:docker-build

Application

Spring Libs

Other Libs

Liberty

~15 Mb

< 1 Mb

https://openliberty.io/blog/2018/09/12/build-and-push-spring-boot-docker-images.html

59

Let boost-maven-plugin help you

Boost creates the layers for you

mvn package

Application

Spring Libs

Other Libs

Liberty

<plugin>
<!-- boost plugin -->
<executions>
<execution>
<goals>
<goal>docker-build</goal>

</goals>
</execution>

</executions>
</plugin>

pom.xml

! Live Demo !

Spring Boot w/
Open Liberty & Eclipse OpenJ9

https://github.com/barecode/adopt-openj9-spring-boot

Part 4 – Wrap up

61

62

Results

Hotspot OpenJ9 OpenJ9 -Xshareclasses -
Xquickstart

Hotspot OpenJ9 OpenJ9 -Xshareclasses -Xquickstart

Startup time is 30% faster with OpenJ9 –Xshareclasses -Xquickstart

63

Results

Footprint is 60% smaller with OpenJ9

Hotspot OpenJ9 OpenJ9 -Xshareclasses -
Xquickstart

Hotspot OpenJ9 OpenJ9 -Xshareclasses -Xquickstart

64

Results

OpenJ9 triggers ~55% fewer wakeups

§ OpenJDK9 with HotSpot – 0.168% CPU § OpenJDK9 with OpenJ9 – 0.111% CPU

§ Summary: 84.7 wakeups/second, 0.0 GPU
ops/seconds, 0.0 VFS ops/sec and 0.3% CPU use.

§ Usage Events/s Category Description
§ 0.9 ms/s 44.2 Process /sdks/OpenJDK9-

x64_Linux_20172509/jdk-9+181/bin/java
§ 119.5 µs/s 20.0 Process [xfsaild/dm-1]
§ 138.6 µs/s 7.4 Timer tick_sched_timer
§ 10.5 µs/s 1.6 Process [rcu_sched]
§ 190.4 µs/s 1.5 Timer hrtimer_wakeup

§ Summary: 38.5 wakeups/second, 0.1 GPU ops/seconds,
0.0 VFS ops/sec and 0.2% CPU use

§ Usage Events/s Category Description
§ 681.2 µs/s 19.2 Process /sdks/OpenJDK9-

OPENJ9_x64_Linux_20172509/jdk-9+181/bin/java
§ 58.3 µs/s 5.2 Timer tick_sched_timer
§ 21.9 µs/s 3.6 Process [rcu_sched]
§ 39.3 µs/s 2.0 Timer hrtimer_wakeup
§ 157.1 µs/s 1.0 kWork ixgbe_service_task

65

Results

Ramping-up in a CPU constrained environment

0 200 400 600 800 1000 1200 1400 1600

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

ec
)

Time (sec)

OpenJDK9 with HotSpot

OpenJDK9 with OpenJ9

OpenJDK9 with OpenJ9 w/AOT -
Xtune:virtualized

-Xtune:virtualized and AOT good for CPU constrained
situations and short running applications

66

Its all change
How you design, code, deploy, debug, support
etc will be effected by the metrics and limits
imposed on you.

Financial metrics and limits always change
behavior. It also creates opportunity

You will have to learn new techniques and tools

The JVM and Java applications have to get
leaner and meaner

Thank you!

67

