
© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 1

Philip Langer
EclipseSource

Building Web-based Diagram Editors

Towards a
Graphical Language Server Protocol

for Diagrams?

Tobias Ortmayr
EclipseSource

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 2

Building domain-specific (modeling) tools for various domains

Modeling tools
development

Business application
development

Software and systems
engineering

Hardware producers,
Mobile networks,

Firmware, ...

Information Systems
Insurances, Accounting,

information management,
...

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 3

○ Deployment and integration
■ Browser is all that is needed
■ Installing tool vs opening a link

○ Modern UI technology
■ SWT vs HTML5
■ GEF 3 vs SVG
■ CSS3 Styling

Web-based diagram editors

1

2

+

+

+

+

+

+

Integration of diagram editors anywhere

Avoid the smell of an IDE

More people in the modeling process

Modern-looking diagrams

Flexibility in diagram style

Visual feedback and animations

- Frameworks?

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 4

SVG-based Diagram Framework in JavaScript

● Pros
○ Decently implemented MVC architecture
○ Nice editing support
○ Feature-rich: many shapes, edge routing strategies, 2D function library

● Cons
○ Not really community-driven open-source framework
○ Everything is on the client

JointJS

+

-

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 5

● One model != one diagram
○ Large models
○ One diagram only shows a part of it
○ Other parts are edited in other diagrams, forms, etc.
○ Prevent loading entire model into browser

● Whole-model understanding required for editing
○ User feedback before/after editing operations
○ Update on outside-of-diagram model changes
○ Live-validation may access outside-of-diagram parts

● Modeling language “smarts” is Java-based
○ Avoid having to re-implement those in JS
○ But re-use them in browser-based implementation

→ Essentially the same problem that’s addressed with LSP

Why a client-server architecture is important to us

Entire ModelDiagrams

Client Server

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 6

Eclipse Sprotty

SVG-based Diagram Framework in TypeScript

● Pros
○ TypeScript

■ Not plain JavaScript

○ Great and extensible architecture
■ Slim abstractions
■ DI-based configuration

○ Truly open-source software
■ Open development
■ Open to contributions
■ Recently became an Eclipse project

○ Integration with Xtext / Language Server Protocol

+

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 7

● Sprotty’s Language Server Extension
○ Visualize models owned by the Language Server

● Sprotty Client-server Protocol
○ Sprotty messages are tunneled through LSP
○ C → S: Request Model
○ S → C: Set/Update Model
○ Bounds
○ Collapse state
○ Selection
○ Pop-ups

● Server manages whole model
● Client doesn’t need to know entire model
● Protocol is front-end oriented (just as LSP)

Sprotty & LSP = Client-server Protocol

Language
Server

LSP
Client

Sprotty
Client

Sprotty’s
LS Extension

LSP Sprotty Client-Server
Protocol through LSP

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 8

● Sprotty server implementation
○ Depends on (textual) language server
○ Textual model is master
○ Graphical model is slave

 → Independent diagram server API and impl

● Client-server protocol
○ Viewing and navigation capabilities only

→ Editing capabilities

● Client
○ UI for visualization purposes

→ Support and UI for editing

So what’s missing?

JSON
Forms

Client

Server

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 9

Applying the architectural pattern of LSP to graphical modeling

● Based on Sprotty
○ Client implementation
○ Sprotty’s client-server base protocol

● Java-based server framework
○ Standalone server implementation
○ Independent from any text language server

● Extension of Sprotty’s protocol for editing

● Client framework
○ Server connector (“model source”) decoupled from LSP
○ UI for editing support hooking up the protocol for editing

Graphical LSP Framework
github.com/eclipsesource/
graphical-lsp

1

2

3

http://eclipsesource.com/munich
https://github.com/eclipsesource/graphical-lsp
https://github.com/eclipsesource/graphical-lsp

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 10

Framework for building specific diagram servers
● Server infrastructure

○ JSON-RPC communication: Sending and receiving action messages
○ Client and model state management
○ Model manipulation infrastructure

● Extensible DI module
○ Action registry

■ Predefined actions
■ Optionally custom actions

○ Action handler registry
■ Generic action handlers available
■ Custom handlers can be configured

Server Framework1

JSON-RPC Infrastructure

Client & Model State Mgt

Action Dispatcher

Action Handler

Create Node
clientId,

type, location

Update
Model

API

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 11

● Transferring, updating, and navigating the diagram
○ Already exists in Sprotty
○ Re-used as a base protocol

● Goals
○ Encapsulate modeling language “smarts” on the server
○ Minimize client-server round-trips (esp. on UI interactions)

● Extensions for editing support
○ Available editing operations
○ Request execution of operation
○ Graphical move and resize
○ Drag and drop hints

● Extensions for additional features
○ Execute server action
○ Problem markers

Towards a Graphical Language Server Protocol2

github.com/eclipsesource/
GraphicalServerProtocol

http://eclipsesource.com/munich
https://github.com/eclipsesource/GraphicalServerProtocol/blob/master/specification.md
https://github.com/eclipsesource/GraphicalServerProtocol/blob/master/specification.md

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 12

Towards a Graphical Language Server Protocol2

Client Server

Request Available Operations

Set Available Operations (operations)

Sprotty base protocol to obtain model, bounds, etc.

Execute Create Node Operation (elemTypeId, location, ...)

Update Model

Execute Create Edge Operation (sourceId, targetId, ...)

Update Model

Operation

id : string
label : string
operationKind : OperationKind
elementType? : string

OperationKind

CreateNode, CreateEdge,
Delete, Move, Generic

render palette update

invoke node creation

manipulate model

manipulate model

render diagram update

render diagram update

invoke node creation

retrieve

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 13

Towards a Graphical Language Server Protocol2

Avoiding server-roundtrip on direct user interaction!

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 14

Towards a Graphical Language Server Protocol2

Client Server

Request Move Hints

Set Move Hints (hints)

Execute Move Operation (elementId, targetContainerId, ...)

Update Model

DragAndDropHint

dragElementClass: string
dropElementClasses[]: string

interpret move hints

initiate move

manipulate model

render diagram update

retrieve

decline move

interpret move hints

initiate move

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 15

Towards a Graphical Language Server Protocol2

Client Server

Request Move Hints

Set Move Hints (hints)

Execute Move Operation (elementId, targetContainerId, ...)

Update Problem Marker

DragAndDropHint

dragElementClass: string
dropElementClasses[]: string

interpret move hints

initiate move

identify violation

render problem marker

retrieve

decline move

interpret move hints

initiate move

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 16

Towards a Graphical Language Server Protocol2

Client Server

Request Move Hints

Set Move Hints (hints)

Execute Move Operation (elementId, targetContainerId, ...)

Update model (rejecting operation)

DragAndDropHint

dragElementClass: string
dropElementClasses[]: string

interpret move hints

initiate move

identify violation

render diagram update

retrieve

decline move

interpret move hints

initiate move

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 17

● Client-side GLSP Diagram Server implementation
○ Connects to a stand-alone GLSP server instance
○ Handles dispatching events locally or to the server

● Sprotty extensions to enable editing capabilities
○ Palette that enables editing tools (for now very simple)
○ Editing tools, e.g. for adding nodes, edges, etc.
○ Persisting diagram changes

● Editing command handlers
○ Hooking up client-side editing commands with the server
○ Sending and receiving the respective protocol messages

Client Framework3

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 18

Demo

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 19

● So far
○ Focus on the server framework & protocol
○ Client extensions only as much as necessary

● Next steps
○ Enhance generic editing capabilities in the client
○ Palette, visual feedback, support for drag and drop hints, etc.
○ Problem markers, property views based on JsonForms, etc.

● Collaboration and contribution
○ Enhancement of Sprotty with TypeFox
○ Client-server protocol definition with TypeFox and Obeo
○ Hopefully with you too?

Current State and Outlook

github.com/eclipsesource/
GraphicalServerProtocol

github.com/eclipsesource/
graphical-lsp

http://eclipsesource.com/munich
https://github.com/eclipsesource/GraphicalServerProtocol/blob/master/specification.md
https://github.com/eclipsesource/GraphicalServerProtocol/blob/master/specification.md
https://github.com/eclipsesource/graphical-lsp
https://github.com/eclipsesource/graphical-lsp

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 20

● Earlier today -- catch them later on Youtube
○ If, when and how? - Strategies towards web-based tooling
○ Lucky in the Cloud With Diagrams

● Tomorrow
○ Building a Web-IDE based on Eclipse Theia for Smart Home (11:55 Bürgersaal 2)
○ EMF, JSON and I (14:45 Theater Stage)
○ Domain-Specific Languages in the Cloud – With Eclipse Technologies (16:30)

● Oct 25th
○ JSON Forms 2.0 (10:45 Theater Stage)
○ Building Web-based Modeling Tools based on Eclipse Theia (11:30 Theater Stage)

More on related topics at EclipseCon

http://eclipsesource.com/munich

© 2018 EclipseSource | http://eclipsesource.com | Philip Langer | Towards a Graphical Language Server Protocol for Diagrams? 21

http://eclipsesource.com/munich

