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Background to Cloud-native
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Good characteristics of a cloud-native 
environment
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Provides APIs for distributed computing
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Starts fast and shuts down clean
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Has a (proportionately) small footprint
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Facilitates dev/prod parity, including through 
externalized config
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Can be easily containerized
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Being fast, small and open
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Middle-aged spread

https://www.slideshare.net/delabassee/java-ee-8-february-2017-update
https://medium.com/@alextheedom/java-ee-past-present-future-8bf25df7b6a3
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Liberty Features

<packaging.type>minify,runnable</packaging.type>

server

build

<featureManager>
<feature>jaxrs-2.0</feature>    
<feature>openapi-3.0</feature>

</featureManager>
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Wildfly Swarm Thorntail Fractions

<dependency>
<groupId>org.wildfly.swarm</groupId>
<artifactId>jaxrs</artifactId>

</dependency>
<dependency>

<groupId>org.wildfly.swarm</groupId>
<artifactId>swagger</artifactId>

</dependency>

build
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What does it mean to provide microservice 
technologies?
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There’s a good chance you’ll use REST APIs.
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Eclipse MicroProfile

JSON-B 1.0JSON-P 1.1CDI 2.0Rest Client 
1.1 JAX-RS 2.1
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Demo of REST support
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Demo of REST support Service C
/props/{propName}

Service A
/props/{propName}
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Handling “100s” of collaborating services 
requires a strong operations focus
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Eclipse MicroProfile

Health
Check 1.0 Metrics 1.1Open Tracing 

1.1Open API 1.0

JSON-B 1.0JSON-P 1.1CDI 2.0Rest Client 
1.1 JAX-RS 2.1
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Demo openapi, health & metrics
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Handling ”100s” of collaborating and
frequently evolving services requires new APIs
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Eclipse MicroProfile

Health
Check 1.0 Metrics 1.1Open Tracing 

1.1Open API 1.0

Config 1.3Fault
Tolerance 1.1

JWT
1.1 

JSON-B 1.0JSON-P 1.1CDI 2.0Rest Client 
1.1 JAX-RS 2.1
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Demo of config and Fault Tolerance
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Fault Tolerance in 
microservices

© 2018 IBM Corporation

Circuit breaker

New capabilities for microservices

service A

service C

@CircuitBreaker(      
failOn=IOException.class,

delay = 500)
public void callServiceC() {

// call the service
}
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Fault Tolerance in 
microservices

© 2018 IBM Corporation

Bulkhead

New capabilities for microservices

service A

service C

@Asynchronous
@Bulkhead(value = 10,

waitingTaskQueue = 15)
public void callServiceC() {

// call the service
}
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Can’t I do all this with a service mesh?
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Fault Tolerance in 
microservices

© 2018 IBM Corporation

App Container can defer to Cloud 
Platform
• Then Cloud Platform takes over:

New capabilities for microservices

service A

service C
MyFallbackfallback

@Fallback
Application still provides:

@Retry
@Timeout
@CircuitBreaker
@Bulkhead

Kubernetes Control Plane
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What is next?
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• Reactive
• Data access
• Istio integration
• Updates to existing specs
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Packaging for deployment
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Making the most of Docker

O/S

JVM

App Server

Application

O/S

JVM

Application

thin war fat jar
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Summary

• Consider both organizational and technological changes to increase 
likelihood of success
• Leverage MicroProfile to solve cloud-native challenges
• Choose appropriate packaging for your cloud
• Reduce overheads and cost with a right-sizeable runtime
• In Docker, strive for a thin application layer
• Learn more with Open Liberty guides

https://ibm.biz/mpGuides

https://ibm.biz/mpGuides
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Thank You


