
1

Practical Cloud-native
Java with Eclipse

MicroProfile

Alasdair Nottingham

@NottyCode

22

Background to Cloud-native

3

Agile

4

Agile & DevOps

+

5

Agile & DevOps & Cloud

+ +

6

Agile & DevOps & Cloud & Microservices

+ + C

B

A

+

77

Good characteristics of a cloud-native
environment

8

Provides APIs for distributed computing

9

Starts fast and shuts down clean

10

Has a (proportionately) small footprint

11

Facilitates dev/prod parity, including through
externalized config

12

Can be easily containerized

1313

Being fast, small and open

14

Middle-aged spread

https://www.slideshare.net/delabassee/java-ee-8-february-2017-update
https://medium.com/@alextheedom/java-ee-past-present-future-8bf25df7b6a3

15

Liberty Features

<packaging.type>minify,runnable</packaging.type>

server

build

<featureManager>
<feature>jaxrs-2.0</feature>
<feature>openapi-3.0</feature>

</featureManager>

16

Wildfly Swarm Thorntail Fractions

<dependency>
<groupId>org.wildfly.swarm</groupId>
<artifactId>jaxrs</artifactId>

</dependency>
<dependency>

<groupId>org.wildfly.swarm</groupId>
<artifactId>swagger</artifactId>

</dependency>

build

1717

What does it mean to provide microservice
technologies?

18

19

There’s a good chance you’ll use REST APIs.

20

Eclipse MicroProfile

JSON-B 1.0JSON-P 1.1CDI 2.0Rest Client
1.1 JAX-RS 2.1

21

Demo of REST support

22

Demo of REST support Service C
/props/{propName}

Service A
/props/{propName}

23

Handling “100s” of collaborating services
requires a strong operations focus

24

Eclipse MicroProfile

Health
Check 1.0 Metrics 1.1Open Tracing

1.1Open API 1.0

JSON-B 1.0JSON-P 1.1CDI 2.0Rest Client
1.1 JAX-RS 2.1

25

Demo openapi, health & metrics

26

Handling ”100s” of collaborating and
frequently evolving services requires new APIs

27

Eclipse MicroProfile

Health
Check 1.0 Metrics 1.1Open Tracing

1.1Open API 1.0

Config 1.3Fault
Tolerance 1.1

JWT
1.1

JSON-B 1.0JSON-P 1.1CDI 2.0Rest Client
1.1 JAX-RS 2.1

28

Demo of config and Fault Tolerance

28

29

Fault Tolerance in
microservices

© 2018 IBM Corporation

Circuit breaker

New capabilities for microservices

service A

service C

@CircuitBreaker(
failOn=IOException.class,

delay = 500)
public void callServiceC() {

// call the service
}

30

Fault Tolerance in
microservices

© 2018 IBM Corporation

Bulkhead

New capabilities for microservices

service A

service C

@Asynchronous
@Bulkhead(value = 10,

waitingTaskQueue = 15)
public void callServiceC() {

// call the service
}

31

Can’t I do all this with a service mesh?

32

Fault Tolerance in
microservices

© 2018 IBM Corporation

App Container can defer to Cloud
Platform
• Then Cloud Platform takes over:

New capabilities for microservices

service A

service C
MyFallbackfallback

@Fallback
Application still provides:

@Retry
@Timeout
@CircuitBreaker
@Bulkhead

Kubernetes Control Plane

333333

What is next?

34

• Reactive
• Data access
• Istio integration
• Updates to existing specs

34

3535

Packaging for deployment

39

Making the most of Docker

O/S

JVM

App Server

Application

O/S

JVM

Application

thin war fat jar

40

Summary

• Consider both organizational and technological changes to increase
likelihood of success
• Leverage MicroProfile to solve cloud-native challenges
• Choose appropriate packaging for your cloud
• Reduce overheads and cost with a right-sizeable runtime
• In Docker, strive for a thin application layer
• Learn more with Open Liberty guides

https://ibm.biz/mpGuides

https://ibm.biz/mpGuides

41

Thank You

