
Java™	Performance	Testing	for	
Everyone	

Presented	By:	

Shelley	Lambert	
(AdoptOpenJDK	Committer,	Eclipse	OpenJ9	Committer,	IBM	Runtimes	Test	Lead)	

	

Who	Am	I?	

Various	Roles	
	
Developer	/	Test	Lead	
Development	Manager	
	
	
Yoga	Teacher	
tuneupfitness.com/teacher/shelley-lambert	

	
	

Chief	Food	Forester	
ottawafoodforests.com	
nanabushfoodforests.com	

The	Scope	

AdoptOpenJDK	

•  Projects:	Eclipse	OMR,	Eclipse	OpenJ9,	AdoptOpenJDK	
•  Ensuring	Free	and	Verified	Java™	for	the	Community	
•  6+	Jenkins	servers	

•  18+	platforms	
•  6+	versions,	4+	implementations	
•  7+	test	categories	->	100,000’s	of	tests	

•  18x6x4x100000	=	~43	million	tests…	nightly,	around	the	world!	

Where	to	start	with	performance?	
•  The	story	of	Java	performance	

– No	single	recipe	(Many	factors:		JVM	
implementation,	hardware,	application	design)	

–  JVMs	evolve,	performance	improves		

•  JVMs	“complex,	intricate,	subtle”		

•  Wouldn’t	it	be	great	if	it	were	simple?	
			-XX:goFaster,	-XX:useLessResources	

The	Intersection	
•  Necessary		

–  developers	need	to	know	if	the	code	they	write	affects	
performance	

–  currently	using	diverse	set	of	tools	and	approaches,	home-
made	scripts,	duplication,	lost	learning	opportunities	

•  Impossible	
–  measuring	performance	often	stated	as	“too	hard”	to	do	

	
	

Necessary	 Impossible	

Defining	the	“Impossible”	
•  What	is	performance	testing?		

–  Often	called	”Experimental	science”	
–  “Testing	if	a	system	accomplishes	its	designated	functions	
within	given	constraints	regarding	processing	time	and	
throughput	rate.”*	

•  Good	performance?		Speed,	resources	or	a	blend	
– Modern	language	runtimes	care	about	many	different	
metrics	

•  Throughput,	Startup	Time,	Ramp-up	Time,	Compile	Time	
•  Footprint	

–  Average	Resident	Set	Size	
–  Compilation	Memory	Consumption	
–  Peak	Resident	Set	Size	

	
	
	
	
	
	

*	Witteveen,	Albert.	Performance	testing	-	a	practical	guide	(Kindle	Locations	176-177).			
	

What	to	measure	
Metric	name	 What	to	

measure?	
Constraints	 Inputs	to	vary	

Throughput	 #	of	transactions	 time	

Latency	 Time	for	single	
transaction	

#	of	transactions	 Workload	(increases)	

Capacity	 #	of	
simultaneous	
transactions	

Throughput	or	latency	 Parallel	load	on	the	
system	

Utilization	 Use	of	resources	 workload	

Efficiency	 Throughput/
utilization	

Scalability	 Throughput	or	
capacity	

Resources	(added)	

Degradation	 Latency	or	
throughput	

utilization	 Workload	(increases)	

Explicit	or	implicit	‘inputs’	to	normalize:	HW,	OS,	system	setup	

Basic	Steps	
•  Set	a	goal	–	which	metric(s)	to	improve	

•  Measure	–	but	how?		tools?		

•  Adjust	–	apply	your	experiments	

•  Measure	again	–	how	exhaustive?	

•  Verify	goal	–	did	the	metrics	improve?		enough?	

AdoptOpenJDK	Testing	
github.com/AdoptOpenJDK/openjdk-tests	

•  The	wildly	different	‘fruit’,	how	to	make	them	
easily	consumable	

“Consolidate	and	Curate”	
	
	
	

	

functional	 openjdk	 perf	jck	external	system	

testkitgen	

testNG,	
cmdlinetester	

STF	 junit	&	
others	 javatest	 Assorted	

benchmarks	
jtreg	

Performance	Benchmarks	
(Large-scale	and	Microbenchmarks	at	AdoptOpenJDK)	

bbench	acme-air	 libertydt	 jmh	idle	spark	 odm	

perf	

Assorted	benchmarks	

…	 …	 …	 …	

Large	scale	

Microbenchmarks	

Introducing	
github.com/AdoptOpenJDK/openjdk-test-tools	

•  PerfNext	-	configure,	tune	and	launch	performance	
benchmarks.		

•  Test	Results	Summary	Service	(TRSS)	-	summarize	and	
visualize	different	test	results	including	perf	results,	push	
different	sets	of	test	results	to	a	DB,	search	test	and	
compare	results	across	different	platforms,	report	on	
differences	between	jobs	

•  Future	services	–	result	analytics,	test	generation,	core	
analytics,	bug	prediction	

Track	the	progress	of	
benchmark	runs	and	
verify	their	output	

TRSS	–	Performance	Comparison	

TRSS	–	Performance	Comparison	

TRSS	–	Regression	Analysis	

1	month	

All data

7	days	

BumbleBench		
“Microbenchmarks	Simplified”	

github.com/AdoptOpenJDK/bumblebench	
	

•  Writing	a	good	microbench	with	an	optimizing	
JIT	running	your	code	is	hard		
– are	you	measuring	what	you	think	you	are	
measuring?	

•  BumbleBench	is	a	Java	framework	that	
provide	a	hook	point	to	implement	the	
benchmark	payload	

•  Framework	provides	the	outer	timing	loop,	
scoring	infrastructure,	etc.	

Conclusion	
•  Perf	is	hard	(not	impossible)	

– High	resource	requirements	for	full-scale	testing	
– Microbenchmarks	difficult	to	write	
– Data	is	noisy	and	subject	to	interpretation	

•  Building	tools	to	make	perf	easier	
– TRSS			/				PerfNext 	/ 	BumbleBench	

•  AdoptOpenJDK	git	repos:	openjdk-tests,	openjdk-test-
tools,	bumblebench	

•  Coming	soon	->	trss.adoptopenjdk.net	

•  Open	Collaboration	leads	to	greater	Innovation	
–  “Innovation	is	creativity	with	a	job	to	do.”	–	John	Emmerling	

	
	

AdoptOpenJD
K	

adoptopenjdk.net											AdoptOpenJDK/openjdk-tests 					@adoptopenjdk	

eclipse.org/openj9										eclipse/openj9 																												@openj9	

eclipse.org/omr															eclipse.org/omr 	 																@eclipseomr	

	
Upcoming	Talks:	
Performance	Testing	for	Everyone	
AdoptOpenJDK:	Ensuring	Free	Java	for	the	Community	
Fuzzy	Plans	and	Other	Test	Integrations	
Shaking	Sticks	and	Testing	OpenJDK	Implementations	

Connect	&	Collaborate!	
Website																		Github																																						Twitter	

8thdaytesting.com										smlambert 	 																											@ShelleyMLambert	

