
Stephan Herrmann

The long Good-Bye
to

NullPointerException

NPE

2Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

The Road Behind

The billion dollar mistake

1965 Tony Hoare introduced Null references in ALGOL W

Bug 110030 – Provide support for null reference analysis

Bug 186342 – Using annotations for null checking

EclipseCon Europe 2011: “Bye-bye NPE”

Bug 383368 – syntactic null analysis for field references

Bug 392099 – Apply null annotations on types for null analysis

EclipseCon Europe 2014: “A Deep Dive into the Void”

Bug 331651 – Support external null annotations for libraries

Continuous improvement of analysis for:

loops, assert, generics, modules, interfacing with “legacy” code

injection, well-known libraries

1965

2006 – 3.2

2011 – 3.8

2015 – 4.5

2013 – 4.3

2014 – 4.4

3Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

The billion dollar mistake

String val;

...

val = null;

...

uc = val.toUpperCase();

1965

4Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

Null Reference Analysis

As part of flow analysis

Only local analysisString val;

...

val = x;

...

if (val != null)
 uc = val.toUpperCase();
else
 lc = val.toLowerCase();

2006 – 3.2

5Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

Using Annotations for Null Checking

Inter-procedural analysis

Simple “contracts”String meth(@NonNull String val1, @Nullable String val2)
{

if (someFlag)
 return val1.toUpperCase();

else
 return val2.toLowerCase();
}

...

s = meth(“hello”, null);

s = meth(null, “hello”);

2011 – 3.8

6Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

Flow Analysis for Fields?

Unexpected errors

3 risks of shared data

concurrency

aliasing

side effects

Compromise

accept minimal risk

no sophistication

“syntactic analysis”

class Test {
 @Nullable String f;

String meth() {
if (this.f != null) {
 // some code here

 return this.f.toUpperCase();
}

 return “<don't know>”;
}

}

2013 – 4.3

7Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

Null Annotations on Types

Since Java 8

JSR 308

@Target(TYPE_USE)
Contracts?

Extended type system

String meth(@NonNull List<@Nullable Person> val)
{
 return val.get(0).getName();
}

...

2014 – 4.4

8Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

2015 – 4.5

External Null Annotations

“Legacy” libraries

Files: *.eea

Command “Annotate”

@NonNull Map<@NonNull String, NonNull Person> val = x;

String name = val.get(“Joe”).getName();

...

9Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

2015 – 4.5

External Null Annotations

“Legacy” libraries

Files: *.eea

Command “Annotate”

@NonNull Map<@NonNull String, NonNull Person> val = x;

String name = val.get(“Joe”).getName();

...

10Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

2015 – 4.5

External Null Annotations

“Legacy” libraries

Files: *.eea

Command “Annotate”

@NonNull Map<@NonNull String, NonNull Person> val = x;

String name = val.get(“Joe”).getName();

...

11Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

2015 – 4.5

External Null Annotations

“Legacy” libraries

Files: *.eea

Command “Annotate”

@NonNull Map<@NonNull String, NonNull Person> val = x;

String name = val.get(“Joe”).getName();

...

12Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

The Road Behind

The billion dollar mistake

1965 Tony Hoare introduced Null references in ALGOL W

Bug 110030 – Provide support for null reference analysis

Bug 186342 – Using annotations for null checking

EclipseCon Europe 2011: “Bye-bye NPE”

Bug 383368 – syntactic null analysis for field references

Bug 392099 – Apply null annotations on types for null analysis

EclipseCon Europe 2014: “A Deep Dive into the Void”

Bug 331651 – Support external null annotations for libraries

1965

2006 – 3.2

2011 – 3.8

2015 – 4.5

2013 – 4.3

2014 – 4.4

13Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

Difficulties

Adding a core concept interacts with all that’s already there

core
OOP

exist
Java

exist
code

Object initialization

@NonNull fields:
when does the contract start?

Language design

● generics, wildcards
● type inference
● records
● patterns (e.g., instanceof)

“Legacy code”

● interact with _
● retrofit using .eea

14Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

Generics meet Legacy

Warn when

legacy code can taint

null-checked values

2020 – 4.15

15Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

Advances concerning External Annotations

16Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

What “3rd Party” Code?

Originally: overlays for jars

Other code that cannot be annotated:

Generated code (if you don't own the code generator)!

Solution

Every classpath entry can refer to external annotations

EEA can be superimposed even on sources

2021 – 4.19

17Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

What “3rd Party” Code?

Originally: overlays for jars

Other code that cannot be annotated:

Generated code (if you don't own the code generator)!

Solution

Every classpath entry can refer to external annotations

EEA can be superimposed even on sources

2021 – 4.19

18Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

What “3rd Party” Code?

Originally: overlays for jars

Other code that cannot be annotated:

Generated code (if you don't own the code generator)!

Solution

Every classpath entry can refer to external annotations

EEA can be superimposed even on sources

2021 – 4.19

19Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

How do clients see my code?

Internally, .eea have become part of generated sources

Clients of those classes should see the same API!

PDE supports new directive in MANIFEST.MF

Ensure .eea are included in deployed jar (build.properties)

Eclipse-ExportExternalAnnotations: true

PDE will do the rest behind the scenes
● Resolved elements of Plug-in Dependencies will have proper annotationpath

Useful for

Plug-in projects with ...

… generated source ...

… superimposed with .eea2022 – 4.24

20Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

How to Manage .eea?

Text files

Initially expected inside each project using a legacy library

Should each project maintain its own set of .eea?

Shareable as jar files / artifacts

Brute force:

Search all classpath locations for .eea

Bad impact on IDE performance

see also: lastnpe.org
addresses such issues by extending m2e

21Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

The challenge for EEA in the IDE

JDT should precisely know where to find .eea

But now .eea are artifacts needing dependency management

Dependency management is handled by your build system

JDT doesn’t know any build system

But JDT knows about classpath containers
● Plug-in Dependencies
● Maven Dependencies
● …

Solution

Specify annotation location relative to a classpath container:

annotationpath=org.eclipse.pde.core.requiredPlugins/org.example.annotations

If annotation artifact is in your dependencies* then JDT will find it for eea lookup2022 – 4.24

22Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

IDE vs. CI Builds

IDE “knows” about .eea

Annotation path is configured via .classpath
● .classpath may depend on Eclipse-specifics (like classpath containers)

Read .eea:
● compiler
● hover

Write .eea:
● Ctrl+1 Annotate

Build tools don't know about .classpath

Add .eea artifacts to your dependencies

Catch all: -annotationpath CLASSPATH

<plugin>
<groupId>org.eclipse.tycho</groupId>
<artifactId>tycho-compiler-plugin</artifactId>
<configuration>

<useProjectSettings>true</useProjectSettings>
<compilerArgs>

<compilerArg>-annotationpath</compilerArg>
<compilerArg>CLASSPATH</compilerArg>

</compilerArgs>
</configuration>

</plugin>

23Stephan Herrmann @EclipseCon Europe 2022 – published under the EPL

Summary

Did I promise too much in 2011?

Yes

Is treatment of null a reason to abandon Java?

No

Is it possible to create provably NPE-free code?

Yes, but only in green field, clean room development.

Which TYPE_USE annotations?

Not “JSR 305”!

org.checkerframework.checkers.nullness ?

org.eclipse.jdt.annotation_2.2.x ?

org.jspecify ?

