

Payments to grow your world

TechSquad PPT Toolbox

A Dev
perspective
on Java Loom

Get in touch:

@jefrajames

jean-francois.james@worldline.com

linkedin.com/ln/jefrajames

Jean-François JAMES
Software Architect

• Focus on Java, Jakarta EE, MicroProfile
• Open Source contributor
• Head of DevRel

We design payments technology
that powers the growth of millions
of businesses around the world.

Who are we?

7000+ engineers
in over 40 countries

Managing 28+ billion
transactions per year

€250M spent in R&D
every year

Handling 150+
payment methods

One project, 3 JEPs

Virtual
Threads

Lightweight threads

JEP 444
Stable with

Java 21 LTS

Structured
Concurrency

Facilitate tasks dev&
run on top of Virtual

Threads

JEP 453
Preview with
Java 21 LTS

Scoped
Values

Modernization,
optimization of
Thread Locals

JEP 446
Preview with
Java 21 LTS

Evolution of Java Concurrency

1997
Java 1.1
Green Threads

2004
Java 1.5
Executor

2014
Java 8
CompletableFuture
Parallel Streams

1998
Java 1.2
Plarform Threads

2011
Java 1.7
ForkJoinPool

2023
Java 21
Virtual Threads

How your application server handles requests?

So, what’s the problem with our Java apps?

Application Server

Request 1

Request 2

Request n

Thread 1

Thread 2

Thread n

…

… Thread pool

Images: Flaticon.com/Freepik

Thread-per-request

OS Threads

OS

JVM

Kernel
mode

User
mode Java Threads

Blocked thread

Running thread

OS Scheduling

Request

Request RequestRequest

Request

Request

Request Request

Request

Request

Request

RequestRequest

Reactive programming

OS Threads

OS

JVM

Kernel
mode

User
mode Java Threads

OS Scheduling

Request

Request RequestRequest

Request

Request

Request Request

Request

Request

Request

RequestRequest

Reactive vs Imperative

ImperativeReactive

You need to choose!

Efficient runtimeEase of dev

Code imperative
AND

Run reactive

Loom is coming!

Virtual thread-per-request

OS Threads

OS

JVM

Kernel
mode

User
mode PlatformThreads

OS Scheduling

Request

Request RequestRequest

Request

Request

Request Request

Request

Request

Request

RequestRequest

Virtual Threads

Blocked virtual thread

Running virtual thread

Inside the JVM: the magic of Continuation

Heap

Continuation.yield(scope) continuation.run()

save

stack

Virtual Thread 1

Carrier Thread a

Carrier Thread b

Carrier Thread c

…

unmount

mount

re
st

or
e

st

ac
k

Fo
rk

Jo
in

P
oo

l

wait

Payments to grow your world

TechSquad PPT Toolbox

Demo time!
Let’s create millions of threads!

Basic Java SE

Code on GitHub

Measured on MacOS (ARM M1, 8 CPU, 16 G RAM)

Java 21

G1 GC (default)

Fixed Heap Size -Xmx=-Xms

Technical Context

https://github.com/jefrajames/loom-demo

Some code

Fast to create?

0

53

105

158

210

Total virtual threads (million)

1 2 4 8 16 32 64

Virtual Threads/sec

8 16 16 16 32 64 128

Memory footprint

0

20 000

40 000

60 000

80 000

Total virtual threads (million)

1 2 4 8 16 32 64

Heap Size (MB)

Carrier Threads

0

2

4

6

8

Total virtual threads (million)

1 2 4 8 16 32 64

Carrier threads

Performance per GC

180

193

205

218

230

G1 ParallelGC ZGC Shenandoah

Virtual threads/sec

+6%

-5%

-9%

Thread pinning

Continuation.yield(scope)

Virtual Thread 1

Carrier Thread a

Carrier Thread b

Carrier Thread c

…

unmount

Fo
rk

Jo
in

 P
oo

l

wait

{native code/JNI}

May reference addresses on the stack
(not supported by unmount/mount mechanism)

Observability & monitoring

Pinned Carrier Threads
-Djdk.tracePinnedThreads=short/full

Others
Java Flight Recorder events: start, end, pinned, submit failed
jcmd thread dumps: plain text (verbose), JSON (hierarchical view)
Warning: not yet production-ready

Memory and GC

• Memory footprint

• GC activity
-xlog:gc

Thread[#63,ForkJoinPool-1-worker-2,5,CarrierThreads]
 org.h2.command.Command.executeUpdate(Command.java:252) <== monitors:1
 org.h2.jdbc.JdbcPreparedStatement.executeUpdateInternal(JdbcPreparedStatement.java:209) <== monitors:1

Configuration
Heap Size -Xmx -Xms

Example when trying to create 16 million Virtual Threads with 4g:
[55,637s][info][gc] GC(23) Pause Full (Ergonomics) 3754M->3754M(3925M) 1869,993ms
[57,496s][info][gc] GC(24) Pause Full (Ergonomics) 3754M->3754M(3925M) 1858,765ms
[59,377s][info][gc] GC(25) Pause Full (Ergonomics) 3754M->3754M(3925M) 1880,413ms
[61,236s][info][gc] GC(26) Pause Full (Ergonomics) 3754M->3754M(3925M) 1858,437ms

Garbage Collector
Throughput first: SerialGC
Latency first: G1, ZGC, Shenandoah

Virtual Thread Scheduler
ForkJoinPool: parallelism, maxPoolSize, minRunnable
Monitoring tool?

Avoid long synchronized blocks/methods
• Replace with ReentrantLock
• Check your dependencies

Make your code Loom-friendly

Requests Per Second with Virtual
Threads

postgresql 42.5.4 (non-loom friendly)

postgresql 42.6.0 (loom)

0 350 700 1050 1400

Thread pool not needed with VT
• Warning: no safety guard with Excecutors.newVirtualThreadPerTaskExecutor()
• Risk of saturation of resources used: outgoing connections
• Use Semaphore to limit the access to resources

Use Thread Locals with care
• Enables to share variables in the context of a Thread
• Design flaws: unbounded lifetime, unconstrained mutability, expensive inheritance
• Not optimal with « millions » of Virtual Threads
• In the mid-term: to be replaced by Scoped Variables

DZone: Pitfalls to avoid when switching to virtual threads

https://dzone.com/articles/pitfalls-to-avoid-when-switching-to-virtual-thread
https://dzone.com/articles/pitfalls-to-avoid-when-switching-to-virtual-thread

Payments to grow your world

TechSquad PPT Toolbox

Demo time!
Virtual Thread Adoption

Open-Source from Red Hat
« Supersonic Subatomic Java »

Native Image support

IO Threads

IO Processing
Reactive programming

Can’t be blocked

Worker Threads

Platform
Threads

Default

Virtual
 Threads

@RunOnDefaultThread

Helidon 3

Production-ready
Java 17

Netty Web Server
Default to Platform Threads

Supports Virtual Threads

Open-Source from Oracle
«Lightweight. Fast. Crafted for Microservices »

Native Image support

Helidon 4

In development
Java 21

Nima Web Server
Virtual Threads by Design

Quarkus Native Performance

REST API + SQL Count (req/sec)

19 000

20 250

21 500

22 750

24 000

Quarkus 3
Imperative

Platform Threads

Quarkus 3
Imperative

Virtual Threads

Quarkus 3 Native
Imperative

Platform Threads

Quarkus 3 Native
Imperative

Virtual Threads

2352923529

21052

20000

Quarkus Native Performance

REST API + SQL Update (req/sec)

0

5 000

10 000

15 000

20 000

Quarkus 3
Imperative

Platform Threads

Quarkus 3
Imperative

Virtual Threads

Quarkus 3 Native
Imperative

Platform Threads

Quarkus 3 Native
Imperative

Virtual Threads

20000

16666

14285

11764

Helidon Performance

REST API + SQL Count (req/sec)

0

4 500

9 000

13 500

18 000

Helidon 3
Imperative

Platform Threads

Helidon 4
Imperative

Virtual Threads

17391

13793

Helidon Performance

REST API + SQL Update (req/sec)

0

3 500

7 000

10 500

14 000

Helidon 3
Imperative

Platform Threads

Helidon 4
Imperative

Virtual Threads

13333

9756

Payments to grow your world

TechSquad PPT Toolbox

Conclusion
Next steps

Learn Virtual Threads

Make your code Loom-friendly

Check how your frameworks and libs adopt Virtual Threads

Bench: identify bottlenecks not visible so far!

Re-bench regularly: things are improving fast!

Short term-In development

Bench

Determine heap size

Select GC algorithm

Configure Virtual Threads scheduling

Check monitoring tool improvement

Mid term-Preparing production

Test Structured Concurrency & Scoped Values

Do some feedbacks to the community

Replace Thread Locals by Scoped Values

Long term

Contact:
JF James

Worldline

Thanks for your
attention!

Contact:
JF James & David Pequegnot

Worldline

Appendix

TechSquad PPT Toolbox

• Asbtract away the use of Virtual Threads

• Enable to coordinate tasks running on Virtual Threads in the context of a “scope”

• Built-in coordination strategy: any, all

• Extensible coordination strategy

• No back pressure

Structured Concurrency

TechSquad PPT Toolbox

• Thread locals not designed to be shared by “millions” of threads

• Unclear lifecycle: not always cleaned up

• Uncontrolled mutability: can be changed at any time

• Inheritance: risk of high memory footprint

• Bound to a callable (not a Thread)

Scoped Values

