Edge computing

The way forward for Eclipse IoT
Agenda

● Introduction to Edge computing
● Open source on the Edge
● Way forward
Intro
Where we are today?

- Everything connected to the core cloud
 - Websites
 - Mobile phones
 - Even IoT devices in most cases
How we got here?

- Mainframes (centralized)
- Client server (distributed)
- Cloud computing (centralized)
- Edge computing (distributed)
Edge is everything outside of the core cloud
Bring compute resources closer to the source
Key triggers?

- IoT
- Much more data
- Need for real time processing
- Much more compute resources
Key enablers?

- Cloud native computing
- 5G
- Machine learning
- Inexpensive, power-efficient hardware (SoC modules, etc.)
- ...

THERE ARE MANY EDGES
Latency

- React locally on sensor or scheduled events
- Compute offload
 - Schedule resource intensive tasks on the dedicated hardware on the Edge
 - Example AR/VR renderings
- Machine learning
 - Cloud trained models - executed on the Edge
 - Edge specific training (environment and data policies)
Reliability and HA

- **Buffer and batch**
 - Store and forward
 - Brokers on Edge nodes

- **Caching**
 - Local (partial) databases on Edge nodes
 - Sync data with the cloud and other Edge nodes
Data preprocessing

- Data sensitivity
 - GDPR
- Convert data to general structured messages
 - Normalize data structure
- Data analytics
 - Send only relevant data
 - Combine multiple sources
- Add metadata
 - Location, Identity, Security
WHAT IS EDGE COMPUTING?

Centralize where you can, distribute where you must.

EDGE
many small sites

CORE
few, large sites

Better economies-of-scale and resource sharing efficiency

Better bandwidth, latency, resiliency, data sovereignty
Key applications?

- Large scale IoT and IIoT
- Smart infrastructure
- Gaming industry
- VR/AR
- AI/ML
- Automotive / Autonomous vehicles
- Security and Surveillance
Challenges

- **Infrastructure**
 - How to manage resources (nodes and clusters) on the Edge?

- **Control plane**
 - How to manage workloads on the Edge?

- **Data plane**
 - How Edge sites communicate with the cloud and between themselves?
Challenges

- **Resources**
 - Limited number of nodes on the Edge
 - No “bursting” to newly provisioned capacity like a public cloud or large datacenter
 - Workloads typically have a wide range of priorities
 - Need more emphasis on prioritization, triage

- **Network**
 - Network capacity can be limited, and variable
 - Like resources, different workloads can have different network policies/priorities
Security

- Unattended operation
- Physical security
- Purity of images
- Secure delivery of secrets
- Unauthorized microservices
- Controlled access to resources
- Guaranteed remote shutdown
Microservices

- Deployment
- Resources
 - Pod priorities
- Communication
 - VPN
 - VAN
- Security
 - Matching microservices to edge hardware
 - Unauthorized outbound
Open source for the Edge
Open source for the Edge

Eclipse ioFog
Where does it fit?

Global Edge Market

- EDGE APPLICATIONS
- IOT FRAMEWORKS
- INFRASTRUCTURE / HARDWARE

Value accrual over time

\ldots

\ldots

TODAY
What does it do... on the lowest level?

Application Framework
- Microservice Manager
- Microservice Authorization
- Remote Config & Debug
- Testing/Version Control
- Plug & Play Installation

Edge Kernel
- Resource Manager
- Hardware Abstraction
- Secure Device Connectivity
- Health Monitoring
- Edge Hardware Security

Microservices
- Any Software

Fog Services
- Distributed Data Bus
- REST APIs
- Real Time APIs
- P2P Fog Networking
- Flexible Storage

Any Hardware
- B.Y.O.E. (Bring your own edge)
What does it do... in the bigger picture?
What does it do… to development lifecycle?

EdgeOps Lifecycle

Development

- **Developer Tools**
 - ioFog SDKs (Python, Node, Java)
 - EdgeAI DevKits for Nvidia and Intel OpenVino platforms
 - Example EdgeAI Applications
 - Documentation
 - Video Series

- **Developer Edition**
 - Single Node Version
 - Same Features as Cloud/Edge
 - Open Source
 - Spin up local ECN for development and testing
 - Integrate with IDEs

EdgeOps

- **Production Runtime**
 - ioFog Edge Computing Fabric
 - Universal Computing Platform
 - 100% Open Source
 - Runs on bare metal or Cloud
 - ioFog controller hosted as a service or integrated with customer’s KBS
 - Automated EdgeOps lifecycle management
Introducing the Edge Compute Network (ECN)

Controller
- Chicago, United States
- 41.8781, -87.6298
- 35.209.224.116

Active resources
- 2 Flows
- 3 Agents
- 6 Microservices

Agents - 3 nodes
- pi-agent1: 2 Microservices
- pi-agent2: 2 Microservices
- pi-agent3: 2 Microservices

See all ECN

Map of the United States showing locations of controllers and agents.
Edge networking

- Hybrid cloud, microservice architecture, agile integration, etc.
 - Not client/server
 - Services/processes want to be deployable and addressable everywhere (north/south/east/west)
- Edge computing - Lots of private subnetworks

![Diagram showing network subnets and NAT (Network Address Translation) points]
Application Layer Addressing

54.193.17.106/16

10.1.2.5/24
10.2.2.8/24
10.1.2.10/24

service
service
service

C
S
S
S
Application Layer Addressing

10.1.2.5/24

10.1.2.10/24

10.2.2.8/24

54.193.17.106/16

C

service

S
Implications of Application Addressing

● Security
 ○ Access control for addresses - at the service/process/business resolution
 ○ Locked-down network membership - Mutual TLS for inter-site connections
 ○ Cross-cluster applications not exposed via Kube networking
 ■ Public exposure limited to ingress
 ○ Trusted and untrusted edges

● Management
 ○ Metrics collected at business resolution
Skupper.io

● Operational Ease
 ○ Easy to deploy in a multi-cluster network
 ○ No advanced networking (SDN, VPNs, Tunnels, Firewall rules, etc.)
 ○ No need for elevated or admin privileges
 ○ No problem with overlapping CIDR subnets or mixes of IPv4 and IPv6
 ○ No single point of failure - use redundant topology

● Not just for messaging
 ○ Proxy maps HTTP, TCP, UDP, etc. to AMQP

● http://skupper.io
 ○ Examples, demo-videos, etc.
 ○ New, emerging project
Way forward
Is cloud obsolete?
Way forward

- Cloud is not obsolete
- Cloud IoT platforms still needed
 - Hono
 - Ditto
- Work on distributed Edge deployments for IoT services
Eclipse Hono

- Business services
- AMQP Network
- Protocol adapter
- Protocol adapter
- Device
- Device
- Device
- Device
- Device
Eclipse Hono

Diagram: AMQP Network connecting to Business services through Protocol adapter, linking devices.
Eclipse Ditto
Next generation "gateways"

- Move to cloud native development of gateways services
- More compute resources
 - More caching
 - More analytics
 - More ML
- CI/CD
Questions?

@dejanb
@kiltonhopkins