
PUBLIC1

REMOTE MANAGEMENT AND MONITORING 

OF DISTRIBUTED OSGI APPLICATIONS

TIM VERBELEN

Senior Researcher

imec – Ghent University

JAN S. RELLERMEYER

Assistant Professor

TU Delft



PUBLIC

REMOTE MANAGEMENT AND MONITORING

▪ On-site management too expensive

▪ The device has no screen or input devices

▪ The device is unreachable

▪ There are too many devices

▪ …

2

FROM IOT TO CLOUD



PUBLIC

OSGI – MODULARITY FOR THE JVM

• Modular Software Management

• Can be managed individually

• Understand versioning

• The implementation of modularity for the JVM

▪ is the Bundle

• Dynamism

• Well-defined life-cycle

• Lose coupling

• Complex systems are inherently dynamic

Module A

Module B

Module C



PUBLIC

OSGI – THE PLATFORM FOR LONG-RUNNING DEVICES

▪ Dynamic Module System for the Java Runtime

▪ Original domain: Home Gateway

▪ Multiple software packages need to co-exist on the same machine

▪ Long-running software

▪ Periodic maintenance and updates requires

▪ Ideally with minimal downtime and no interruption of unrelated software packages

4

• Java on the Embedded Device

• Pros:

• bridges heterogeneity

• can run the same code in the cloud or on the device

• Cons:

• updates and maintenance

http://www.adbglobal.com/medias/images/products/prg_eav4202n/prg_eav4202n_ogd_front_486x222.png


PUBLIC

REMOTE MANAGEMENT IS NOT NEW (IN OSGI)

▪ TR-069 is a remote management protocol specified by the Broadband Forum 

▪ Specifies a bi-directional protocol based on SOAP 1.1 over HTTP

▪ For managing “Customer-Premise Equipment (CPE)” 

▪ Designed for routers, gateways, set-op boxes,…

5

TR-069 CONNECTOR SERVICE SPECIFICATION



PUBLIC

REMOTE MANAGEMENT IS NOT NEW (IN OSGI)

▪ A logical view of manageable entities 

implemented by plugins and structured in a 

tree with named nodes

▪ One generic API to hide a multitude of 

remote management protocols

▪ Used in IoT space (i.e. Bosch SI)

6

DEVICE MANAGEMENT TREE (DMT)



PUBLIC

REMOTE MANAGEMENT OVER REST

▪ RESTful interface

▪ Exposing the framework and its internal state as resources

▪ Bundles

▪ Services

▪ Easy management of OSGi deployments through REST

▪ Command line tools

▪ Web interfaces

▪ Application-level

▪ REST service implementation ships with Concierge 5.1



PUBLIC

REST SERVICE ARCHITECTURE

▪ framework 

▪ framework/state 

▪ framework/startlevel

▪ framework/bundles 

▪ framework/bundles/representations 

▪ framework/bundle/{bundleid} 

▪ framework/bundle/{bundleid}/state 

▪ framework/bundle/{bundleid}/startlevel

▪ framework/bundle/{bundleid}/header 

▪ framework/services 

▪ framework/services/representations 

▪ framework/service/{serviceid}

8



PUBLIC

REST SERVICE ARCHITECTURE

▪ framework 

▪ framework/state 

▪ framework/startlevel

▪ framework/bundles 

▪ framework/bundles/representations 

▪ framework/bundle/{bundleid} 

▪ framework/bundle/{bundleid}/state 

▪ framework/bundle/{bundleid}/startlevel

▪ framework/bundle/{bundleid}/header 

▪ framework/services 

▪ framework/services/representations 

▪ framework/service/{serviceid}

9



PUBLIC

REST SERVICE ARCHITECTURE

▪ framework 

▪ framework/state 

▪ framework/startlevel

▪ framework/bundles 

▪ framework/bundles/representations 

▪ framework/bundle/{bundleid} 

▪ framework/bundle/{bundleid}/state 

▪ framework/bundle/{bundleid}/startlevel

▪ framework/bundle/{bundleid}/header 

▪ framework/services 

▪ framework/services/representations 

▪ framework/service/{serviceid}

10



PUBLIC

REST CLIENT

▪ RestClientFactory
public interface RestClientFactory {

RestClient createRestClient(URI uri);

}

▪ RestClient
public interface RestClient {

…

FrameworkStartLevelDTO getFrameworkStartLevel() throws Exception;

void setFrameworkStartLevel(FrameworkStartLevelDTO startLevel) throws Exception;

…

}

11



PUBLIC

REST CLIENT IN .JS

var client = new OSGiRestClient('http://localhost:8080/restendpoint’); 

client.installBundle(bundle, { 

success : function(res) { 

// Start the bundle once the install has finished 
client.startBundle(res.id); 

}, failure : function(httpCode, res) { 

// handle failure 

} 

});

12



PUBLIC

REST CLIENT IN .JS

var client = new OSGiRestClient('http://localhost:8080/restendpoint’); 

client.installBundle(bundle, { 

success : function(res) { 

// Start the bundle once the install has finished 
client.startBundle(res.id); 

}, failure : function(httpCode, res) { 

// handle failure 

} 

});

13



PUBLIC

REMOTE MANAGEMENT OVER REST

14

DEMO



PUBLIC

REST SPEC LIMITATIONS

▪ Requires a REST server on the device to manage

▪ Why not use the OSGi service layer? And OSGi Remote Services?

▪ Limited to a single OSGi framework

▪ Why not manage a cluster of OSGi frameworks?

▪ Limited to OSGi-specific information (i.e. bundles, services, etc)

▪ Why no metrics on the underlying (hardware?) platform?

15



PUBLIC

CLUSTER INFORMATION SPECIFICATION

16

THE NEW KID IN TOWN



PUBLIC

FRAMEWORK NODE STATUS

17

CLUSTER INFORMATION SPECIFICATION

▪ Presence services indicating a framework / node is there

▪ Service properties exposing node metadata

▪ Unique identifier (and parent)

▪ Location information (country, region, zone, …)

▪ Endpoints (private and public)

▪ Tags (application-specific)



PUBLIC

FRAMEWORK NODE STATUS (2)

18

CLUSTER INFORMATION SPECIFICATION

▪ HashMap<String, String> metrics(String… keys)

▪ Provides implementation-specific metrics about the node

▪ Typically things that change over time (i.e. resource usage) 

▪ Integrated with Remote Service Admin specification

▪ *NodeStatus exported as remote service

▪ Remote services automatically shared within cluster



PUBLIC

FRAMEWORK MANAGER

19

CLUSTER INFORMATION SPECIFICATION

▪ Managing of an OSGi framework

▪ Similar API as the REST specification, but now as remote service

▪ List / inspect bundles and services

▪ Install / start / update bundles



PUBLIC

CLUSTER INFORMATION SPECIFICATION

20

DEMO



PUBLIC

ECLIPSE CONCIERGE

▪ Full OSGi core R5 compatibility

▪ R6 almost done

▪ R7 to come

▪ Keep a small footprint to work well on embedded devices 

▪ 250kiB without debug symbols

▪ 330kiB with debug symbols

▪ Remain “readable” 

▪ Currently 9 classes

▪ Remain backwards-compatible

▪ Java 5

21

Gateway



PUBLIC

CONCLUSIONS

▪ Concierge is an OSGi framework 

optimized for embedded devices and 

the Internet of Things

▪ It hosts the reference implementations 

for the REST service and the Cluster 

Information specifications. 

▪ Check them out to ease the remote 

management of your OSGi 

deployments.

22

http://eclipse.org/concierge

https://github.com/eclipse/concierge

Project 
Homepage

Clone it 
from here


